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This note intends to clarify the way in which the expansion of an initially uniform 
gas into an ambient atmosphere degenerates into an expansion into a perfect 
vacuum. The starting-point is a paper by Greenspan & Butler (1962) in which 
certain tentative remarks are made reprding this question. We show that the 
flow consists of an infinite-strength contact front coinciding with the gas- 
vacuum interface of the perfect-vacuum expansion, driving an infinite-strength 
shock into the vacuum ahead of it. The ga,s-vacuum interface and the shock are 
separated a t  all times even though the density of the gas through which the 
shock travels vanishes in the vacuum limit. 

1. The problem 
I n  a paper published in 1962 Greenspan & Butler derive a centrally important 

result concerning the one-dimensional unsteady expansion of an initially uniform 
gas into a vacuum; they show that the gas-vacuum interface in such a flow moves 
with a constant speed independent of the geometry be it spherical, cylindrical or 
plane. I n  their conclusions they give a brief indication of how the vacuum result 
might be used as a first step in an iterative approach to the more general problem 
of the expansion into a uniform ambient gas of low density and sound speed. It is 
the purpose of this note to take up this point and to clarify the role of the perfect- 
vacuum expansion in this context. 

We consider a source gas (denoted by subscript 4) enclosed a t  t = 0 within 
r = L, surrounded by a lower density ambient gas (subscript 0). The source gas is 
then allowed to expand into the ambient gas and the subsequent flow is studied 
from tbe viewpoint of inviscid gasdynamics. The general picture is well known; 
the two gases are separated by a contact front which drives a primary shock 
ahead of it into the ambient gas, while in general a secondary shock forms in the 
source gas behind the contact front. We are interested in the motion of the 
contact-front-primary-shock system and in particular the way in which the flow 
degenerates into the perfect-vacuum expansion as the ambient density and 
sound speed go to zero. It is clear that in this limit the contact front will become 
the gas-vacuum front, so to a first approximation it may be replaced by the gas- 
vacuum interface of the perfect-vacuum expansion, shown by Greenspan & 
Butler to have velocity 2a,/(y,- 1) (where y and a are the specific heat ratio and 
sound speed respectively). In  this note we look at what happens to the primary 
shock in this limit and, in particular, examine the validity of the conjecture of 
Greenspan & Butler that it becomes the gas-vacuum interface. 
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2. The solution 
An indication of the answer is provided by the plane shock tube problem, for 

which there is an analytic solution available. I n  the limit po, ao-+ 0, the contact 
front travels with speed 2a4/(y4- I )  and drives an infinite-strength shock into 
the ambient gas with speed (yo+ l)a4/(y4- 1) .  We now exploit this picture and 
investigate the analytic possibilities for non-planar geometry. 

The equations governing the time-dependent one-dimensional flow of an 
inviscid adiabatic gas are 

wherep’, p’ and u‘ have their usual meaning and cr is the geometry index. yo is the 
ratio of the specific heats of the ambient gas and is assumed constant. I n  the 
vacuum limit the contact front moves, to a first approximation, with speed 
2a.,/(y4- I )  and hence the boundary conditions there are 

u’ = 2a4/(y4- 1) on r’ = 2a,t’/(y4- 1) .  ( 2 . 2 )  

We now consider the boundary conditions a t  the shock front. With conditions in 
front denoted by subscript 0 and those behind by subscript 1, the Rankine- 
Hugoniot relations give 

(1 -ag/Vr2}, u’ - - 2 V r  
I -  yo+l 

where V’ is the unknown shock velocity. Now putting pi = pIpo,p; = plpoai, 
u; = a4u1, V’ = a4 V and taking the vacuum limit ao/a4 -+ 0, we have on the shock 
to a first approximation 

u1= 2V’/(YO+I),  P 1 =  (Yo+1) / (Yo- l ) ,  PI = 2V21(Y0+1), (2.4) 

i.e. the strong shock relations. On making the same scaling in (2.1) and (2.2) 
together with rr = r L  and t’ = tL/a4, we get 

at ar +-- - 0,) a(Pr‘) a(Purg) 

au au l ap  -+u-+-- = 0 
at ar par ’ 

with u = 2/(y4-  I )  on r = 2t/(y4- 1). (2.6) 
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FIGURE 1. a plotted against yo for plane, cylindrical and spherical flow. 

We have to solve (2.5) and find V subject to (2.4), (2.6) and the initial conditions 
u = 0 , p  = 1 a n d p  = Oforr > 1. 

This problem closely resembles that encountered in steady hypersonic small 
disturbance theory (for a review of this see Freeman (1965)) and can be attacked 
in the same way. Initially the shock moves with a velocity appropriate to the 
plane problem, viz., 

k o  = (YO+ 1)l(Y4- 1) .  (2.7) 

A uniformly valid large-time solution consists of an outer expansion valid near 
the piston and an inner expansion valid near the shock. The matching conditions 
and shock relations provide the boundary conditions for the inner problem of each 
order. The zeroth-order inner solution is the similarity solution of Taylor (1946) 
generalized to variable r, yo and y4. For t+m, first-order matching of the large- 
time expansions gives 

where a is a function of CT and yo determined by numerical integration of two 
ordinary differential equations and is shown in figure 1. For IT = 0, a = 1 and the 
error term is zero, and we have the plane problem referred to  earlier. 

One further point remains. It is apparent from (2.4) that the sound speed in the 
gas between the shock and the contact front remains of O( 1)  in the vacuum limit. 
This can only be consistent with conditions immediately behind the gas-vacuum 
interface of the perfect-vacuum expansion, where the sound speed goes to  zero, if 
we admit an infinite temperature jump across it. Recalling that the interface is a 
degenerate contact, front, we see that this condition is in accord with the require- 
ments of inviscid gasdynamics. It is in this sense that the gas-vacuum interface 
is an infinite-strength contact front. 
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In conclusion, we have shown that in the limit of vanishing ambient density 
and sound speed the contact front and shock driven by it have distinctly different 
motions. Contrary to previous conjecture the strong shock and the contact front 
do not coalesce. 

The author would like to thank Professor N. C. Freeman for some helpful 
discussions and comments and Mr R. McLaughlin for performing the com- 
putations. 
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